Calculation of the vertical velocity of geophysical flows with Mass Consistent Models

Marco A. Núñez

Depto. Física, Universidad Autónoma Metropolitana Iztapalapa, AP 55-534, CP 09340, D.F., México. e-mail: manp@xanum.uam.mx

A primary problem in geophysical fluid dynamics is the calculation of the vertical component of the velocity field $\mathbf{V}_{\mathrm{T}} = u_{\mathrm{T}}\mathbf{i} + v_{\mathrm{T}}\mathbf{j} + w_{\mathrm{T}}\mathbf{k}$ in a bounded region Ω with boundary Γ . Methods such as the integration of the equation $\nabla \cdot \mathbf{V} = 0$ and the so-called Omega equation, have been proposed [1]. In this work it is shown that Variational Mass Consistent Models (VMCM) [2–5] permit the exact calculation of the vertical component w_{T} . The VMCM assume that an initial field $\mathbf{V}^{0}(x)$ is obtained by interpolation of discrete data. Then an adjusted field \mathbf{V} is computed by means of the following conditions: (i) \mathbf{V} minimizes the functional $J(\mathbf{V}) = \int_{\Omega} (\mathbf{V} - \mathbf{V}^{0}) \cdot \mathbb{S} (\mathbf{V} - \mathbf{V}^{0}) d\Omega$, where $\mathbb{S}(x)$ is a symmetric and positive definite matrix, (ii) \mathbf{V} satisfies $\nabla \cdot \mathbf{V} = 0$ in Ω ; if \mathbf{n} denotes the outward unit normal to Γ and Γ_{N} is the part of Γ where an estimation of $\mathbf{V}_{\mathrm{T}} \cdot \mathbf{n}$ is known, (iii) \mathbf{V} is subject to the boundary condition $\mathbf{V} \cdot \mathbf{n} = \mathbf{V}_{\mathrm{T}} \cdot \mathbf{n}$ on Γ_{N} .

A decomposition argument of the space $\mathbf{L}^2(\Omega)$ is used to prove the existence and uniqueness of \mathbf{V} [4], which is given by $\mathbf{V} = \mathbf{V}^0 + \mathbb{S}^{-1} \nabla \lambda$ where λ satisfies the boundary condition $\lambda = 0$ on $\Gamma_D \equiv \Gamma \setminus \Gamma_N$. Thus \mathbf{V} is obtained by solving the elliptic problem $L\lambda = \nabla \cdot \mathbf{V}^0$ in Ω , with $\mathcal{L}\lambda = (\mathbf{V}_T - \mathbf{V}^0) \cdot \mathbf{n}$ on Γ_N , $\lambda = 0$ on Γ_D , where $L \equiv -\nabla \cdot \mathbb{S}^{-1} \nabla$, $\mathcal{L} \equiv \mathbf{n} \cdot \mathbb{S}^{-1} \nabla$. The standard problem solved in meteorology is $L\lambda = \nabla \cdot \mathbf{V}^0$ in Ω , $\mathcal{L}\lambda = 0$ on $\Gamma_{z=h(x,y)}$ =topography, $\lambda = 0$ on $\Gamma_D = \Gamma \setminus \Gamma_h$, with a diagonal and constant matrix $\mathbb{S} = \{\delta_{ij}\alpha_i^2\}$ and $\mathbf{V}^0 = u^0\mathbf{i} + v^0\mathbf{j}$.

To the date the following problems are open: (i) The field $\mathbf{V} = \mathbf{V}^0 + \mathbb{S}^{-1} \nabla \lambda$ depends critically of α_i but there is no consensus about the manner to compute α_i , (ii) there is no rigorous proof that the vertical component w_{T} can be computed with VMCM. In this work the following results are proved rigorously: (i) If the true horizontal field $\mathbf{V}_{\mathrm{Th}} = u_{\mathrm{T}}\mathbf{i} + v_{\mathrm{T}}\mathbf{j}$ is known, there is a unique vertical component w_{T} that satisfies $\nabla \cdot \mathbf{V}_{\mathrm{T}} = 0$ and $\mathbf{V}_{\mathrm{T}} \cdot \mathbf{n} = 0$ on $\Gamma_{z=h(x,y)}$. Thus we get a unique field $\mathbf{V}_{\mathrm{T}} = u_{\mathrm{T}}\mathbf{i} + v_{\mathrm{T}}\mathbf{j} + w_{\mathrm{T}}\mathbf{k}$. (ii) If the initial field \mathbf{V}^0 is \mathbf{V}_{Th} and we solve the standard problem with $\Gamma_D = \Gamma_{z=h(x,y)}$, there is an optimal value $\alpha_{3,\mathrm{opt}}$ of α_3 for which the horizontal components of the adjusted field $\mathbf{V} = u\mathbf{i} + v\mathbf{j} + w\mathbf{k}$ coincide with those of \mathbf{V}_{T} . The component w also coincides with w_{T} except in a vicinity of the lateral boundaries $\Gamma_{x=0,x_{\mathrm{max}}} \equiv \{\text{planes } x = 0, x = x_{\mathrm{max}}\}, \Gamma_{y=0,y_{\mathrm{max}}} \equiv \{\text{planes } y = 0, y = y_{\mathrm{max}}\}$ where w is discontinuous [5]. (iii) This last deficiency is eliminated with suitable boundary conditions. Thus we solve the problem of estimating α_3 . The results are independent of α_1, α_2 , this opens the possibility of computing a better field \mathbf{V} by means of additional data (such as pressure data) or parameter estimation methods (such as genetic algorithms [3]) when \mathbf{V}^0 is an estimation of \mathbf{V}_{Th} .

References.

[1] J. R. Holton, An introduction to dynamic meteorology, 3rd. ed. (Academic Press, San Diego, 1992).

R. A.Pielke, *Mesoscale Meteorological Modeling* (Academic Press, New York), 2nd ed. (2002).

[2] Ratto, C. F., Festa, R., Romeo, C., Frumento, O. A. and Galluzzi, M. (1996), Mass-consistent models for wind fields over complex terrain: The state of the art, *Environ. Software* 9, 247-268.

[3] E. Rodríguez, G. Montero, R. Montenegro, J.M. Escobar and J.M. González_Yuste, Parameter Estimation in a three dimensional wind field model using genetic algorithms, *Lect. Notes in Comput. Sci.* 2329, 950-959 (2002).

[4] M. A. Núñez, C. Flores and H. Juárez, "Interpolation of hydrodynamic velocity data with the continuity equation", *J. Comp Met. Sci. Eng.*, in press.

[5] M. A. Núñez, C. Flores and H. Juárez, "A Study of hydrodynamic mass-consistent models", *J. Comp Met. Sci. Eng.* **6**, 365-385 (2006).